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Abstract. Above 40 K, the magnetic susceptibility of the heavy Fermion spinel LiV2O4 has many features in
common with those of geometrically frustrated magnetic insulators, while its room temperature resistivity
comfortably exceeds the Mott-Regel limit. This suggests that local magnetic moments, and the underlying
geometry of the pyrochlore lattice, play an important role in determining its magnetic properties. We
extend a recently introduced tetragonal mean field theory for insulating pyrochlore antiferromagnets to
the case where individual tetrahedra contain spins of different lengths, and use this as a starting point to
discuss three different scenarios for magnetic and electronic transitions in LiV2O4.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 71.10.-w Theories and models of
many-electron systems – 75.40.Cx Static properties (order parameter, static susceptibility, heat capacities,
critical exponents, etc.)

1 Introduction

Geometrically frustrated magnetic insulators continue to
fascinate experimental and theoretical physicist alike.
These systems are intriguing because the physics of a wide
range of materials, with an equally wide range of physical
properties, is underpinned by alluringly simple considera-
tions of symmetry and entropy. Perversely, the properties
of frustrated systems which are structurally far more com-
plicated than “textbook” magnetic insulators can there-
fore sometimes be understood on the basis of very simple
arguments [1].

Recently, the geometrically frustrated “metal” LiV2O4

has also attracted a great deal of attention as the first ex-
ample of d-electron heavy Fermion system. In this article
we apply simple arguments borrowed from the study of
frustrated magnetic insulators to the magnetic suscepti-
bility of LiV2O4 over the temperature range 30–1000 K.
We argue that our simple model provides a good starting
point for understanding the role of local geometric effects
in the physics of LiV2O4, and use it to explore the strength
and weaknesses of three different scenarios for the mag-
netic “transitions” seen in this material.

Our analysis is based on the extension of a recently
introduced tetragonal mean field theory to a system with
a mixture of different magnetic moments. We neglect the
partially itinerant nature of d-electrons in LiV2O4. This
approximation limits the range of temperatures over which
the theory is valid, but can be justified on the basis of
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simple physical arguments. This article is therefore di-
vided into two parts. In Sections 2 to 4 we review and
extend the mean field theory for a magnetic insulator on
a pyrochlore lattice. In Section 5 we apply the generalized
theory to the magnetically active V sites in LiV2O4, and
discuss the remaining puzzles presented by the magnetic
susceptibility of this most unusual material.

2 Model

2.1 The Heisenberg model on a pyrochlore lattice

The usual starting point for understanding the physics of
magnetic insulators is the Heisenberg Hamiltonian

H =
∑
ij

JijSi · Sj (1)

where Si is the operator for the spin of electrons on site i,
and the matrix element Jij describes the (super-)exchange
interaction between electrons on sites i and j. In this paper
we consider the special case of antiferromagnetic nearest-
neighbour interactions J〈ij〉 > 0, on a pyrochlore lattice.

The pyrochlore lattice is a (sub-)structure common to
many different magnetic insulators and a small number
of metallic systems, including the sublattice of V sites in
the spinel oxide LiV2O4. While the pyrochlore lattice has
overall cubic symmetry, it can be broken down into inter-
penetrating A and B sublatticies of tetrahedral subunits.
The bases of these tetrahedra lie in parallel planes, with
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Fig. 1. a) Section of pyrochlore lattice showing two sublat-
tice structure in terms of opposing “A” and “B” tetrahedra.
In our model, spins are located at the corners of the tetra-
hedra and are therefore shared between the two sublattices.
In this illustration, solid A sublattice tetrahedra point out of
the plane, while unfilled B sublattice tetrahedra point into the
plane. b) Mixed spin tetrahedron showing the different Heisen-
berg couplings J1, J2 and J3.

the bonds in each plane forming a Kagomé lattice, as il-
lustrated in Figure 1a. The tetrahedra of the A and B
sublattices share a site at each corner, and neighbouring
Kagomé planes are joined by opposing pairs of A and B
sublattice tetrahedra.

In general, antiferromagnetic nearest neighbour ex-
change interactions favour anti-parallel spin alignments.
For a bipartite lattice this presents no problem, and the
classical groundstate of equation (1) is the Néel state.
However the pyrochlore lattice falls into a more general
class of lattices which exhibit an effect known as geometric
frustration – it is impossible to construct a classical spin
configuration in which all neighbouring spins are aligned
anti-parallel to one another. Where this is the case, many
different states can become degenerate, and geometrically
frustrated magnets therefore tend to have a high (classi-
cal) ground state degeneracy. Because this degeneracy is
greater than that anticipated on the basis of simple sym-
metry arguments, it is sometimes termed “accidental”. At
a classical level, such accidental degeneracies lead to the
existence of new branches of zero energy excitations in
addition to the true goldstone modes of the system.

Quantum and/or thermal fluctuations may enable a
frustrated system to chose its true groundstate by lifting
the degeneracy between different classical spin configura-
tions [2] (equivalently, by generating a mass for all un-
physical zero energy excitations). This effect falls into the
broad category of “order from disorder” transitions [3].
Since calculations of order from disorder effects in quan-
tum spin systems must take proper account of spurious
classical zero energy modes, they are usually very involved
(see e.g. [4], or for a recent example involving itinerant
electrons [5]). It is therefore desirable to find a more eco-
nomical way of calculating the properties of such systems.
One way to do so is to start in a basis of states which
already reflects the local symmetries of the lattice.

In the case of the pyrochlore lattice, where each in-
dividual tetrahedral subunit is itself geometrically frus-
trated, it is convenient to build up our description of the
lattice starting from a basis of isolated tetrahedra.

2.2 An individual tetrahedral subunit

We start by considering an individual tetrahedron on the
A sublattice:

HTET = HEX +Hh (2)

where HEX the Heisenberg Hamiltonian

HEX =
∑
〈ij〉Tet

JijSi · Sj (3)

and in order to calculate the susceptibility we introduce
an external magnetic field along the z-axis

Hh = h
∑
i

Szi . (4)

Here the indices i, j denote sites at different corners of the
tetrahedron, and the sum is restricted so as to count each
bond between spins only once.

This subunit is a system of four interacting local mo-
ments, and we consider the case in which the magnetic
ions at each corner of the tetrahedron may take on one of
two possible values of total spin, these being either “large”
(specifically, S = 1 in what follows), or “small” (below,
s = 1/2). The exchange integral Jij will in general vary
with the size of the spins at sites i and j. We use the no-
tation J1 to refer to the exchange interaction between two
small spins, J2 to the exchange interaction between two
large spins, and J3 to the interaction between two spins
of different size, as illustrated in Figure 1b. We assume
that J2 > J3 > J1 > 0, on the general grounds that more
electrons contribute to exchange integrals, the larger they
will be. This expectation is born out by LDA estimates of
the exchange integrals Jij for LiV2O4 [6].

Since any given tetrahedron may have 0, 1, 2, 3 or 4
large spin moments (the remainder being of the small spin)
we must consider five different cases. We will not consider
the additional charge degeneracy associated with the dif-
ferent ways of distributing spins throughout the tetrahe-
dron as, for an insulator, this has no dynamics.

2.2.1 Excitation spectrum and partition function

Since total spin is conserved for any isolated tetrahedron,
it must be possible to diagonalize the Hamiltonian (3) in
the basis of eigenstates of total spin

Ω = S1 + S2 + S3 + S4 (5)

and its z-component Ωz. If we further introduce the total
spin of the “small” and “large” spin subsystems

σ =
∑
{i}T et

SiδSi 1
2

Σ =
∑
{i}T et

SiδSi1 (6)
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the Hamiltonian (3) can be written

HTet =
1
2
[
JΩΩ

2 + Jσσ
2 + JΣΣ

2
]

+ const. (7)

where JΩ = J3, Jσ = J1− J3 and JΣ = J2− J3. The cou-
pling to external magnetic field is now simply Hh = hΩz

and the excitation spectrum of the model in the absence
of a magnetic field can be read directly from the Hamil-
tonian (3)

E(Ω, σ,Σ) =
1
2

[JΩΩ(Ω + 1) + Jσσ(σ + 1)

+JΣΣ(Σ + 1)] . (8)

The restriction J2 > J3 > J1 > 0 implies that JΩ > 0,
and the ground state of the tetrahedron is a spin-singlet
for tetrahedra with integer total spin. Since under this
assumption Jσ < 0, the smaller spins tend to be aligned
in order to collectively screen the larger ones.

In order to calculate the partition function of the tetra-
hedron, we also need to know the degeneracy g(Ω, σ,Σ)
of each state. We will not discuss the (tedious) details of
the evaluation of these degeneracy factors, but note that
they can be found using a simple generalization of the
method introduced for systems with a single type of spin
by van Vleck (see Appendix A). Actual degeneracies for
the states of tetrahedra with no, one, two, three and four
spin S = 1 spins are listed in Appendix B.

Given knowledge of E(Ω, σ,Σ) and g(Ω, σ,Σ), the
partition function of the tetrahedral subunit in the pres-
ence of a magnetic field h at temperature T can be ex-
pressed as

Z =
∑
ΩσΣ

g(Ω, σ,Σ) exp
(
−E(Ω, σ,Σ)

T

)
× FΩ

(
hΩ

T

)
(9)

where FΩ(x) is the function

FΩ(x) =
sinh

(
(2Ω+1)x

2Ω

)
sinh

(
x

2Ω

) · (10)

2.2.2 Entropy and specific heat

The entropy of an individual tetrahedral subunit is
given by

S = lnZ +
〈E〉
T

(11)

where the average energy of the system 〈E〉 is

〈E〉 =
1
Z

∑
n

Ene−
En
T . (12)

The sum over states {n} involved can easily by evaluated
numerically. Results are shown in Figure 2 for the five pos-
sible mixed spin tetrahedra. For purposes of comparison,
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Fig. 2. Entropy of spin 1/2, spin 1 and mixed spin tetrahedra
as a function of temperature in units where kB = 1. From top
to bottom at RHS plot, tetrahedra with – 4 spin 1 (dotted
line), 3 spin 1 and 1 spin 1/2 (solid line), 2 spin 1 and 2 spin
1/2 (dotted line), 1 spin 1 and 3 spin 1/2 (solid line), 4 spin
1/2 (dotted line). All couplings set equal to J .

all different exchange couplings have been set equal to the
single value J .

The entropy increases from a lower bound set by
the groundstate degeneracy and tends towards an upper
bound set by the total number of spin degrees of free-
dom for each tetrahedron. This crossover from collective
ground state to individual spin degrees of freedom takes
place on a scale of temperatures of order of the exchange
coupling constant J , and the entropy has a point of in-
flection for T ∼ J/2. A more realistic parameterization of
the exchange constants {J1, J2, J3} 6= J modifies the de-
tails of the crossover, but does not affect the high or low
temperature limits.

Similarly, we can evaluate the specific heat of the sys-
tem

cV =
〈E2〉 − 〈E〉2

T 2
(13)

in terms of its the mean square energy

〈E2〉 =
1
Z

∑
n

E2
ne−

En
T . (14)

Results are shown for the same set of tetrahedra in Fig-
ure 3. Once again, for purposes of comparison, all ex-
change constants have been set equal to J .

The heat capacity of the tetrahedra at temperatures
T � J vanishes since the first excitation energy of the
tetrahedron occurs at finite energy E1 ∼ J . The heat ca-
pacity is peaked for T ∼ J/2, where the entropy has its
point of inflection, and tends to zero at high temperatures
as the entropy of the individual spins in the tetrahedron
are saturated.
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Fig. 3. Heat capacity of spin 1/2, spin 1 and mixed spin tetra-
hedra as a function of temperature in units where kB = 1. From
top to bottom at RHS plot, tetrahedra with – 4 spin 1 (dotted
line), 3 spin 1 and 1 spin 1/2 (solid line), 2 spin 1 and 2 spin
1/2 (dotted line), 1 spin 1 and 3 spin 1/2 (solid line), 4 spin
1/2 (dotted line). All couplings set equal to J .

2.2.3 Magnetic susceptibility

The magnetization of the tetrahedron in the presence of
a magnetic field is given by

M =
1
Z

∑
ΩσΣ

g(Ω, σ,Σ) exp
(
−E(Ω, σ,Σ)

T

)
×ΩFΩ

(
hΩ

T

)
BΩ

(
hΩ

T

)
(15)

where BΩ(x) is the Brillouin function

BΩ (x) =
(2Ω + 1)

2Ω
coth

(
(2Ω + 1)x

2Ω

)
− 1

2Ω
coth

( x

2Ω

)
· (16)

We define the susceptibility per site of the tetrahedron by

χT et(T ) =
1
4
∂M

∂h
≈ 1

4
M

h
(17)

which in the limit of small h/T , gives

χT et(T ) =
1

12T
1
Z

∑
ΩσΣ

g(Ω, σ,Σ)

×Ω(Ω + 1)(2Ω + 1) exp
(
−E(Ω, σ,Σ)

T

)
(18)

where, to the same level of approximation

Z ≈
∑
ΩσΣ

g(Ω, σ,Σ)(2Ω + 1)

× exp
(
−E(Ω, σ,Σ)

T

)
· (19)
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Fig. 4. Magnetic susceptibility of spin 1/2, spin 1 and mixed
spin tetrahedra as a function of temperature. From top to bot-
tom at RHS plot, tetrahedra with – 4 spin 1 (dotted line),
3 spin 1 and 1 spin 1/2 (solid line), 2 spin 1 and 2 spin 1/2
(dotted line), 1 spin 1 and 3 spin 1/2 (solid line), 4 spin 1/2
(dotted line). All couplings set equal to J .

Results for the susceptibility of the five different tetrahe-
dra are shown in Figure 4. Once again, in order to simplify
comparisons, all exchange constants have been set equal
to J .

In the limit where T/J →∞ we must recover a Curie-
Weiss susceptibility

χT et(T →∞)→ C

T + θ
(20)

where the coefficient C represents the contribution of an
individual spin to the susceptibility and θ is the Curie
temperature associated with interactions between spins
within the same tetrahedron. In practice the crossover to
this high temperature regime occurs for T ∼ 5J .

The value of C is given by CS = S(S+1)/3 only when
the tetrahedral subsystem consists entirely of spin S local
moments. For the mixed spin case, it is an average of the
different CS ’s of the different spins within the tetrahedron.
In general it can be written as

C =
1
12
N1

N0
(21)

where

N0 =
∑
ΩσΣ

g(Ω, σ,Σ)(2Ω + 1) (22)

is the total number of states of the system and

N1 =
∑
ΩσΣ

g(Ω, σ,Σ)(2Ω + 1)Ω(Ω + 1) (23)

is a number determined by the degeneracy g(Ω, σ,Σ) of
the states of the mixed spin tetrahedron.
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Table 1. Curie coefficients and temperatures for tetrahedra
with different mixtures of spin. Mean field corrections to the
Curie temperature assume zeff = 3.

C θ ∆θMF

( 1
2 ,

1
2 ,

1
2 ,

1
2 ) 0.25 0.75J1 0.75Jeff

(1, 1
2 ,

1
2 ,

1
2 ) 0.351 0.159J1 + 0.855J3

(1, 1, 1
2 ,

1
2 ) 0.458 0.0068J1 + 0.485J2 + 0.727J3 1.374Jeff

(1, 1, 1, 1
2 ) 0.558 0.759J2 + 0.923J3

(1, 1, 1, 1) 0.667 2.00J2 2.00Jeff

Similarly, for a tetrahedron with a single size of spin,
the Curie temperature θ associated with interaction be-
tween spins can be written θS = z0JS(S+1) where z0 = 3
is the number of neighbouring spins within the same tetra-
hedron. In the mixed spin case, this generalizes to

θ =
JΩ
2

(
N2

N1
− N1

N0

)
+
Jσ
2

(
Nσ

2

N1
− Nσ

1

N0

)
+
JΣ
2

(
NΣ

2

N1
− NΣ

1

N0

)
(24)

where the various numerical factors are given by

Nσ
1 =

∑
ΩσΣ

g(Ω, σ,Σ)(2Ω + 1)σ(σ + 1) (25)

NΣ
1 =

∑
ΩσΣ

g(Ω, σ,Σ)(2Ω + 1)Σ(Σ + 1) (26)

N2 =
∑
ΩσΣ

g(Ω, σ,Σ)(2Ω + 1)Ω2(Ω + 1)2 (27)

Nσ
2 =

∑
ΩσΣ

g(Ω, σ,Σ)(2Ω + 1)Ω(Ω + 1)σ(σ + 1) (28)

NΣ
2 =

∑
ΩσΣ

g(Ω, σ,Σ)(2Ω + 1)Ω(Ω + 1)Σ(Σ + 1). (29)

Values of the coefficient C and the Curie temperature θ for
different mixed spin tetrahedra are given in Table 1. As a
compact notation we refer to a tetrahedron with one spin
one and three spin half moments as (1, 1/2, 1/2, 1/2), etc.
The related numerical coefficients, and degeneracy factors
are listed in an Appendix. Mean field corrections to θ for
tetrahedra with integer total spin will be discussed below.

At low temperatures T � J the behaviour of the sus-
ceptibility depends on the spin of the ground state of the
tetrahedron. The tetrahedra with an even total spin have
singlet ground states, so the lowest lying excitation which
couples to magnetic fields is a triplet state at finite energy.
This leads to an exponentially activated magnetic suscep-
tibility at low temperatures, visible for the three relevant
cases in Figure 4. At intermediate temperatures T ∼ J
the susceptibility for these systems is strongly peaked, be-
fore crossing over smoothly to the anticipated Curie law
at high temperatures.

The tetrahedra with an odd total spin, on the other
hand, have ground states with a net spin Ω = 1/2, and for

T < J exhibit a Curie law divergence as χ(T ) ∼ 3/12× T ,
as seen in Figure 4. At intermediate temperatures the sus-
ceptibilities of these tetrahedra cross over smoothly to the
(different) high temperature Curie-Weiss law.

The idea of calculating the magnetic susceptibility of
the spin S (classical) Heisenberg model on a Pyrochlore
lattice using an independent assembly of tetrahedral sub-
units has been previously proposed by Moessner and
Berlinsky [7].

2.3 Mean field theory

As suggested by Garciá-Adeva and Huber [8], we can con-
struct a mean field theory for the Heisenberg model on a
pyrochlore lattice by considering each spin within a tetra-
hedron on the A sublattice to feel only the average effect
of interactions with spins in other tetrahedra. Where the
groundstate of each tetrahedron is assumed to be a spin
singlet, for example in the three integer total spin cases
considered above, the different tetrahedra interact with
one another only when a magnetic field is applied. In this
case, the effective field felt by any given spin is reduced
by its AF interaction with the induced magnetization of
neighbouring tetrahedra, and the susceptibility of the sys-
tem is accordingly modified to

χMF (T ) =
χT et(T )

1 + zeff Jeff χT et(T )
(30)

where zeff is the number of neighbouring spins in different
tetrahedra, and Jeff is the effective exchange interaction
for the “missing” bonds of the B sublattice. In theory, for
a single spin system with a single type of spin and only
nearest neighbour interactions zeff = z0 = 3 and Jeff = J .
But in practice, even for systems with only one type of
spin, when it comes to comparison with experiment, the
product zeff Jeff is probably best regarded as an adjustable
parameter [8].

The new mean field Curie temperature is related to
the Curie temperature of an isolated tetrahedron by

θMF = θ + zeff JeffC (31)

The coefficient C of the high temperature susceptibility is
of course independent of interaction and so unchanged.

For simplicity, we have limited our discussion here to
the case of tetrahedra with singlet groundstates, where
the generalization of the theory presented by [8] is most
straightforward. Results for the mean field susceptibilities
of different tetrahedra are shown in Figure 5. For AF ex-
change interactions as defined above, the mean field cor-
rections lead to an overall suppression of the susceptibility,
which is reflected in the increase of the Curie temperature
calculated above. The tetrahedra with an even number of
spin S = 1 moments still show a peak in their susceptibil-
ity at T ∼ J , but this is now a less pronounced maximum.

In the examples above we have set all the exchange
constants {J1, J2, J3, Jeff } = J . In Figure 6 we illus-
trate the effect of relaxing this constraint on the magnetic



532 The European Physical Journal B

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20 25

T/J

χ

S = 1

Mixed Spin

S = 1/2

Fig. 5. Magnetic susceptibility of spin 1/2, spin 1 and mixed
spin tetrahedron with two spin 1 moments as a function of tem-
perature, including mean field interactions between tetrahedra.
All couplings set equal to J .
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Fig. 6. Magnetic susceptibility of isolated tetrahedron with
two spin 1 and two spin 1/2 (upper pair lines) and mean field
susceptibility of equivalent lattice model (lower pair lines).
Solid lines are for J1 = J2 = J3 = Jeff = J . Dashed lines are
for J3 = J , J1 = J/3, J2 = 2J , Jeff = 0.680441, chosen so that
the mean field Curie temperature is the same in each case.

susceptibility of an individual tetrahedron with two spin
S = 1 moments, and on the mean field theory for a lat-
tice of such tetrahedra. Lowering the coupling between
the two spin S = 1/2 moments to J1 = J/3 while increas-
ing that between the spin S = 1 moments to J2 = 2J
leads to a sharper peak in the susceptibility at lower tem-
peratures, as more excitations become accessible at low
temperatures.

However, since the high temperature susceptibility is
of Curie law form in either case, these modifications are
pronounced only on a scale of T ∼ J → 2J . From Table 1
we see that while the low energy scale J1 is important for
the low temperature susceptibility, the Curie temperature
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Fig. 7. Mean field theory including different types of mixed
spin tetrahedra. From top to bottom – α = 0.3 (dotted line),
α = 0.2 (dotted line), α = 0.1 (dotted line), α = 0.0 (solid
line), where α is defined by equation (32).

of the tetrahedron is extremely insensitive to change in J1.
In the example plotted, the mean field coupling Jeff has
been adjusted so as to compensate for the new values of J1

and J3, giving the same Curie temperature and therefore
the same high temperature susceptibility. In practice the
two models become indistinguishable for T > 5J . This
means that a representative average “J” can be extracted
from knowledge of the high temperature susceptibility of
a system described by this model.

It is also interesting to consider the case of a lattice of
such tetrahedra which is modified by the inclusion of a low
density of “impurity” tetrahedra with greater (or lesser)
total spin. To make this concrete, let us suppose that on
average each tetrahedron contains two spin S = 1 and two
spin S = 1/2 moments, but that in some fraction α/2 of
tetrahedra, there are in fact three spin S = 1 moments,
and in an equal number three spin S = 1/2 moments.
Then the mean field susceptibility is modified to

χT et(α, T ) = αχT et(11 1
2

1
2 )(T )

+
α

2

[
χT et(111 1

2 )(T ) + χT et(1 1
2

1
2

1
2 )(T )

]
. (32)

Results are shown for J1 = J2 = J3 = Jeff = J and a
range of values of α in Figure 7. At high temperatures the
system must show its “average” character in a well defined
Curie law, and the redistribution of moments between dif-
ferent tetrahedra is irrelevant. For temperatures T > J/2
the increased susceptibility of the tetrahedra with three
spin S = 1 moments exactly cancels the reduced suscepti-
bility of the tetrahedra with three spin S = 1/2 moments
and all results collapse onto the curve for α = 0. At lower
temperatures the presence of the tetrahedra with a net
groundstate spin leads to an upturn in the susceptibil-
ity. This becomes steadily more pronounced as α → 1,
although the mean field theory cannot be relied upon in
this limit.
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Further generalizations of the mean field theory intro-
duced in [8] for geometrically frustrated magnets with a
single type of spin have been given in [9–11].

3 Magnetic susceptibility of LiV2O4

LiV2O4 is the first d-electron system to exhibit true
“heavy Fermion”, i.e. Pauli paramagnetism and (approxi-
mately) linear specific heat at low temperature, both with
strongly enhanced coefficients, but with a Wilson ratio
W ∼ 1.7 [12]. The Fermi energy lies in the vanadium
t2g d electron bands, which are in total half filled, giving
an average of 1.5 d electrons per vanadium lattice site.
A presumed strong Hund’s rule coupling implies that in
an atomic basis, each site possesses either a spin S = 1/2
or spin S = 1 moment, according to whether one or two
d-electrons are found on that site.

At very low temperatures the resistivity of LiV2O4 in-
creases as T 2 [13], and the Nuclear relaxation rate obeys
the Korringa law 1/T1T = const., as would be expected of
a Fermi liquid with well defined quasi-particles [14]. How-
ever this behaviour breaks down at about 4 K, and LiV2O4

is a poor conductor, with low temperature resistivity inter-
mediate between that of a good metal (Ag, Cu) and that
of an intrinsic semi-conductor (Si,Ga). In addition, the
entropy associated with the low energy electronic excita-
tions of the system is very large. An estimate made by in-
tegrating the heat capacity (after appropriate background
subtractions for phonon and impurity contributions) gives
approximately 0.5kB log 2 per site at 50 K [13]. This value
is much greater than that for any other d-electron system,
and should be compared with the maximum entropy per
site of kB log 2 for a single spin S = 1/2 degree of freedom.
If we interpret the low temperature heavy Fermion be-
haviour of LiV2O4 naively in terms of an enhanced mass,
electronic quasi-particles are approximately as massive as
muons. Bandstructure calculations, on the other hand,
suggest a relatively small mass correction and underes-
timate the specific coefficient γ by a factor of 25 [15,16].

At about 20 K, the electronic physics of LiV2O4 under-
goes marked change, visible in measurements of resistivity,
heat capacity, susceptibility and Hall coefficient [13]. This
crossover has sometimes been identified with the coher-
ence temperature for an s-f heavy Fermion system, and a
number of authors have suggested a minimal Kondo lattice
model for LiV2O4 in which two-thirds of the d-electrons
play the role of local moments (a single spin S = 1/2
per site), and the remaining third are itinerant. Various
mechanisms have been proposed to justify treating sub-
sets of the vanadium t2g d-electrons on a different footing,
and hints of local moment physics for d electrons are even
seen in some band structure calculations [16], but no real
sign of Kondo physics (e.g. logerythmic corrections to re-
sistivity) are seen immediately above the “transition” at
20 K.

The magnetic susceptibility of LiV2O4 displays a num-
ber of interesting features over a wide range of tempera-
tures. At low temperatures (T < 40 K) it exhibits a weakly
temperature dependent Pauli paramagnetic susceptibility,

but with a massively enhanced value of χ ∼ 5× 10−3 per
mole vanadium. This crosses over smoothly to what has
generally been interpreted as Curie law behaviour, but
with different coefficients in different temperature ranges
100–500 K and 500–1000 K [17,18]. Over the same wide
range of temperatures the resistivity continues to increase
slowly but monotonically, and comfortably exceeds the
Mott-Regel limit [13].

In what follows we will make the approximation of
treating LiV2O4 as an insulating Heisenberg system of
magnetic moments on a pyrochlore lattice. This is not un-
reasonable, as the magnetic susceptibility of LiV2O4 varies
on a scale typical of Heisenberg exchange integrals (10–
100 K), and not on the scale of the Hund’s rule coupling or
d-electron bandwidths found from LDA calculations (both
∼ 104 K), and because the naive mean free path for elec-
trons is of atomic proportions. Furthermore, the frustrated
geometry of the pyrochlore lattice means that spin coher-
ence lengths will also be small, so the tetrahedral mean
field theory developed above can be expected to provide a
reasonable starting point for discussing its magnetic sus-
ceptibility. In what follows we will consider three different
scenarios for the magnetic physics of LiV2O4, using our
simple model and the experimentally measured suscepti-
bility to place constraints on each.

The theoretical predictions for magnetic susceptibility
per spin given above can be related to the experimentally
measured susceptibility in emu per mole vanadium (equiv-
alently cm3 [mol V]−1) according to

χexp(T ) = 0.375g2
Lχ

theory(T ) (33)

where gL ∼ 2.0 is the Landé g-factor for the coupling
of a magnetic field to the spin of a vanadium ion. We
note that experimental susceptibilities are often quoted
in emu mol−1, i.e. per it mole-formula-unit. One mole of
LiV2O4 contains two vanadium ions.

3.1 First scenario – mixed valent local moments near
to charge order

The vanadium atoms in LiV2O4 occur in two valence
states, d1 (V4+) and d2 (V3+). Both of these have an in-
complete shell of d-electrons, and vanadium has a strong
Hund’s first rule coupling, so both have a net magnetic
moment – S = 1/2 in the case of V4+, and S = 1 in the
case of V3+.

Another important fact is that LiV2O4 is close to
charge order. This could be anticipated by analogy with
other mixed valent transition metal spinels – for exam-
ple those Ferrites which undergo a Verwey (charge or-
dering) transition. To explain this, Anderson invoked a
“tetrahedron rule” requiring that charge balance be sat-
isfied within each tetrahedron, i.e., that each tetrahedron
should have two of the high, and two of the low ioniza-
tion states [20]. If all events violating the tetrahedron rule
are neglected, a charge ordered magnetic insulating state
can be stabilized by either long range interactions [20] or
a distortion of the lattice [21]. The remaining dynamics
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Fig. 8. First scenario – fit of mixed-spin tetragonal mean field theory to the experimentally measured magnetic susceptibility
of LiV2O4 over the temperature range 0–400 K, taken from [19], using the two adjustable parameters g = 1.6 and J = 17.8 K.
Annotation on the temperature axis shows the type of correlation between spins. Inset – how the fit breaks down at low
temperatures. A possible interpretation of the electronic state of the system in terms of charge order correlations in different
low temperature ranges is given.

are then determined by the residual (antiferromagnetic)
Heisenberg exchange integrals.

While LDA estimates suggest that the energy asso-
ciated with Coulomb interaction between V3+ and V4+

ions on neighbouring sites is lower than the threshold for
charge order [22], experimentally LiV2O4 does charge or-
der under pressure [23]. It has therefore been suggested by
Fulde et al. [6] that the application of the tetrahedron rule
to LiV2O4 provides a way of explaining its heavy Fermion
behaviour at low temperatures.

The essential ingredient of this theory is the emer-
gence of one-dimensional correlations between spins as a
result of the tetrahedron rule. Since each tetrahedron has
two spin one and two spin half moments, every vanadium
atom must be connected to two vanadium atoms with
same moment, one within its tetrahedron, and one in a
neighbouring tetrahedron. This means that the lattice of
tetrahedra can be divided into Heisenberg chains of spin
half or spin one moments. These chains may close to form
rings, with a minimum length of six spins. The remaining
simplification is that the interaction between neighbour-
ing chains is neglected, so that the spin one chains have
(Haldane-)gapped excitations, while the spin half chains
have low lying fermionic excitations (spinons) with linear
specific heat. These, and not the dressed electronic quasi-
particles of the more familiar rare earth heavy Fermion
compounds, are the heavy Fermions of Fulde’s theory.

Since this scenario for calculating the low temperature
susceptibility of LiV2O4 is based on the tetrahedron rule,
and treats LiV2O4 as an insulator, it is natural to ex-
tend it to higher temperatures using the tetragonal mean

field theory for a mixed valent system described above.
Specifically, the tetrahedron with two spin one and two
spin half moments considered in Section 2 corresponds
exactly to a tetrahedral subunit of four neighbouring V
atoms in LiV2O4, on the assumption that charge balance
is achieved locally by including two V4+ and two V3+ in
each tetrahedron, in accordance with Anderson’s tetrahe-
dron rule. It is this four spin elementary unit, which has
a integer total spin and therefore a singlet groundstate,
that will form the basis of our mean field theory.

Both the mean field and the Fulde spinon theories
have singlet groundstates, but in the mean field theory
the triplet excitations which couple to magnetic field have
no dispersion and therefore retain a finite excitation en-
ergy J3. The spinon theory, on the other hand, includes
(approximately) the processes which lift this degeneracy,
and captures the low lying excitations necessary to ex-
plain the Pauli paramagnetism and linear specific heat of
LiV2O4. The two theories will therefore disagree in their
predictions at very low temperatures, but must agree in
the high temperature limit for which local moment physics
is recovered. The mean field theory is essentially exact for
the wide range of temperatures for which the range of
magnetic correlations on the pyrochlore lattice does not
extend beyond an individual tetrahedron [7].

Figure 8 shows a mean field fit to the experimental
susceptibility of LiV2O4 taken from [19], based on tetra-
hedra with two spin one and two spin half moments. The
fit is excellent down to temperatures of order 20–30 K,
at which one might expect correlation effects beyond the
scope of a mean field theory (for example the formation
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Fig. 9. Second scenario – inverse magnetic susceptibility of LiV2O4 over the range 0–1100 K as quoted in [17] (diamonds), [18]
(squares), together with linear fits to the “Curie Law” behaviour seen at high (broken lines) and low temperatures (unbroken
lines). Inset – low temperature fit to susceptibility taken from [19], assuming a lattice of spin 1/2 moments and Landé g-factor
g = 2.04 (solid line), together with unconstrained fit (broken line).

of chains and rings), and above all the fact that LiV2O4

is not an insulator, to become important.
Two adjustable parameters have been used for the fit,

the Landé g-factor gL and a single representative Heisen-
berg exchange integral J = J1 = J2 = J3 = Jeff . The
effective correlation number zeff is set equal to three.
The parameters gL and J are then uniquely determined
by the Curie temperature θ = 47 K and coefficient
C = 0.46 K emu/mol V which can be extracted from the
Curie law behaviour of the susceptibility on the range
100–400 K. The fit below 100 K then provides an inde-
pendent test of the validity of the tetragonal mean field
theory. As can be seen in the inset to Figure 8, the tetrag-
onal mean field theory appears to be very successful, at
least over the range of temperatures for which it can rea-
sonably be applied.

It is tempting to identify the temperature T ∼ J ≈
20 K at which both the model and experimental suscepti-
bilities have their maximum, and begin to diverge, as the
scale for a crossover to a new low temperature state. It is
almost certainly true that the inclusion of processes which
violated the tetrahedron rule, i.e. the hopping of electrons
between tetrahedra, prevent the system from achieving the
local singlet groundstate on which the mean field theory
is based, and might reasonably lead to the emergence of
a HF state. This, within Fulde’s scenario, would occur
through the deconfinement of spinons.

However, even above 40 K, where the fit is very good,
a number of important experimental facts remain unad-
dressed by this scenario. One is that the Landé g-factor
extracted from the fit is really too low, gL = 1.6, as com-
pared with the usual value of gL = 2.0 found for bulk
Vanadium. The tetrahedral mean field theory also has
too great an entropy, and therefore too great a heat ca-

pacity as compared with experimental estimates. But the
most challenging observation is that published suscepti-
bility data for temperatures of order 1000 K appear to
show a crossover to a different Curie law regime with
C ≈ 700 K emu/mol V and θ ≈ 400 K. It is this issue
which we address in the following section.

3.2 Second scenario – two different local moment
regimes

Figure 9 shows the inverse magnetic susceptibility of
LiV2O4 between 100 and 1100 K, as reported by Muhtar
et al. [17] and Hayakawa et al. [18]. Above 600 K, and be-
low 400 K Curie law behaviour is seen in the sense that the
inverse susceptibility can be approximated by a straight
line with slope 1/C and intercept θ. However the values
of the Curie temperature θ and the the coefficient C are
quite different for the high and low temperature regimes.

In fact the value of the C found at high temperatures
corresponds quite well to that which would be expected
for an equal mixture of spin half and spin one moments
(V4+ and V3+ ions), assuming a Landé factor gL = 2.0,
while the value of C found at low temperatures is much
closer to that which would be expected if each tetrahedral
site had a spin half moment.

This has prompted the suggestion that the full spin
moment of the V atoms is seen only at high tempera-
tures, while at lower temperatures this moment is par-
tially “screened” by correlations between spins in such a
way that only a net spin of one half remains at each V site
(see e.g. [24]). The majority of theoretical attempts to ex-
plain heavy Fermion behaviour in LiV2O4 [24–28] take as
a starting point a tetrahedral lattice of spin half moments
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Table 2. Exchange coefficients, exponents, and Landé g-factors found from fits to data.

Kondo et al. [19] Muhtar et al. [17] Hayakawa et al. [18]

First scenario:

gL 1.6 – –

J 17.8 K – –

Second scenario –
high temperature regime:

gL – 2.04 2.14

J – 119 K 122 K

Second scenario –
low temperature regime:

χ0 0.26 × 10−3 emu/mol V 0.18× 10−3 emu/mol V 0.12× 10−3 emu/mol V

J 26 K 25 K 13 K

Third scenario:

α – 0.74 0.80

T0 – 0.021 0.053

(often identified with the A1g representation of the V d-
electron states), and assign the remaining half an electron
per site to an itinerant electron band (equivalently, Eg
states). We will not attempt to review these theories here,
but in the light of these models, it is clearly worth trying
to obtain a “self consistent” fit to both the high and low
temperature magnetic susceptibilities of LiV2O4 within
the overall scenario of two local moment regimes.

Using the tetragonal mean field theory developed
above, we therefore proceed as follows: we first (least
squares) fit the high temperature (600–1000 K) suscep-
tibility assuming an equal mixture of spin one and spin
half moments, using the two adjustable parameters J and
gL, as described in the previous analysis. We obtain val-
ues of gL = 2.04 and J = 119 K for data taken from
Muhtar et al. [17] with a mean square error per point of
σ = 0.0028 emu/mol V, as recorded in Table 2. Simi-
larly, for data taken from Hayakawa et al. [18] we obtain
gL = 2.14, J = 122 K and σ = 0.0024 emu/mol V. Then,
using the value of the Landé g-factor gL obtained at high
temperatures, we fit the low temperature susceptibility
(100–400 K). We do this assuming that each tetrahedral
site has a localized spin half moment, and that the contri-
bution of the remaining itinerant electrons can be lumped
into a single paramagnetic constant χ0 so that

χ(T ) = χ0 + χMF (T ) (34)

where χMF (T ) is the mean field susceptibility of the
lattice of spin half lattice tetrahedra [29]. As fit pa-
rameters we use χ0 and J , the exchange integral be-
tween the local spin half moments. We obtain values
χ0 = 0.18 emu/mol V and J = 25 K with an error
σ = 0.030 for data taken from Muhtar et al. [17] and χ0 =
0.12 emu/mol V, J = 13 K and σ = 0.047 emu/mol V for
data taken from Hayakawa et al. [18].

In Figure 9 we plot the data described above, showing
the high temperature fit with dashed and the low tem-
perature fit with unbroken lines. Each fit is good, within
its own domain of validity. The values of the fit parame-
ters obtained from data taken from [17] and [18] are not

quite the same, and the apparent variation in values of
the Landé g-factor gL might be a cause for concern. How-
ever, as the fit parameters strongly depend on the how
background contributions were subtracted from the exper-
imental data, it is difficult to draw any strong conclusions
about their precise values, and note the absolute values
of susceptibility quoted for the heavy Fermion phase of
LiV2O4 at very low temperatures also vary from group to
group.

In the inset to Figure 9 we show fits to the low temper-
ature susceptibility of LiV2O4 as measured by [19] on the
range 40–400 K, using a model susceptibility of the form
equation (34). As no high temperature data was available
for this sample, we use both constrained (solid line) and
unconstrained (dashed line) values of gL. Values of the fit
parameters are shown in Table 2. For the constrained fit
a value of gL = 2.04 was taken from high temperature
data for [17], using which values of χ0 = 0.26 emu/mol V
and J = 26.0 K were found, with a mean square error per
point of σ = 0.11 emu/mol V. The better fit was in fact
obtained for the unconstrained (three parameter) fit, for
which χ0 = 0 emu/mol V, J = 33 K and gL = 2.3, and
σ = 0.052 emu/mol V.

To summarize, the assumption that LiV2O4 has two
different local moment regimes as a function of temper-
ature, leads to fits to its magnetic susceptibility which
a) have physically parameters and b) have an error compa-
rable to the uncertainty of the data. However, by splitting
the data into different temperature regimes in this way
we have not only assigned a physical meaning to the ob-
served change in the slope of the inverse susceptibility, but
also diminished what we learn from each fit – almost any
data set could be fitted piecewise, but cutting it into small
enough pieces. Most importantly, our mean field theory
can tell us nothing about how such a crossover between
different local moment regimes takes place, and this re-
mains an important question for microscopic theories of
LiV2O4 to address.

In the section below we consider a radically differ-
ent, and admittedly speculative, way of understanding the
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magnetic susceptibility of LiV2O4 over the temperature
range 100–1100 K, prompted by experiments on Zn and
Li doped samples.

3.3 Third scenario – powerlaw scaling

LiV2O4 is by no means the only spinel oxide. Many dif-
ferent systems have been synthesized, and all possess the
same geometric frustration, which leads to a complex in-
terplay of spin, charge and orbital order, which may in
turn be linked to lattice modes [21]. This is evident in the
many different ground states which these systems achieve
– some like ZnCr2O4 stabilizing spin order through a dis-
tortion of the lattice, others, like AlV2O4, achieving charge
order through valence skipping. Crudely speaking, each
material seeks a means of reducing the high entropy asso-
ciated with its frustrated geometry by playing off different
competing forms of order. In LiV2O4 the low temperature
state is a heavy Fermi liquid, and it seems reasonable to
believe that the system is a poor metal precisely because
no one form of insulating order is achieved.

It is possible to dope LiV2O4 by substituting the Zn
for Li to give Li1−xZnxV2O4 [17], or by substituting Ti for
V to give LiTiyV2−yO4 [18]. Zn is a magnetic impurity,
and occupies the octahedral sites in the spinel. The in-
clusion of small concentrations of Zn forces LiV2O4 into a
spin glass phase, with a spin glass temperature which van-
ishes as the number of Zn impurities tends to zero [13].
The alternative “parent” compound Zn1V2O4 is an AF
Mott insulator. Ti is non-magnetic, and occupies tetrahe-
dral sites in the spinel. Small concentrations of Ti do not
substantially alter the properties of LiV2O4, but at larger
dopings it undergoes a metal insulator transition. LiTi2O4

is a conventional superconductor with Tc = 13.7 K. The
Curie coefficient C extracted from the high temperature

susceptibilities of Li1−xZnxV2O4 and LiTiyV2−yO4 does
appear to have the expected dependence on doping.

So LiV2O4 lies at a quantum critical point for a tran-
sition into a spin glass phase on doping, and is close to
charge order on the application of pressure. It is therefore
clear that there is quantum phase transition (probably,
a line of critical points) close to the undoped, ambient
pressure, ground state. What influence, if any, could this
be expected to have? Quantum phase transitions at zero
temperature can manifest themselves at finite tempera-
ture through the power law scaling of response functions.
Is there any evidence for scaling behaviour in LiV2O4?

We make the simple conjecture that the magnetic sus-
ceptibility of LiV2O4 might be described by a simple
power law of the form

χ(T ) = A

(
T

T0

)α
(35)

over a wide range of temperatures.
The magnetic susceptibility of LiV2O4 is shown plot-

ted on a log-log scale in the inset to Figure 10. If the
temperature dependence of the data were a simple power
law, the data would lie on a straight line. In the case of a
Curie law, this straight line would have a gradient of one.

A least squares fit to the susceptibility data re-
ported by [17] over the full range of temperatures (i.e.
100–1100 K) leads to an exponent α = 0.74, with a mean
error per point of σ = 0.038. In the case of the data re-
ported by [18], fitting the full data set from 100–1000 K,
we find an exponent α = 0.80, and an error per point
σ = 0.053. The errors of these fits are not as good as
those for the fits to Curie law behaviour at high tempera-
tures, but no worse than those for the self consistent low
temperature fits within the two local moment scenario.
The fits are shown on a linear scale in Figure 10.
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Existing evidence therefore does not rule out the possi-
bility that, rather than exhibiting a crossover between two
different local moment regimes, the magnetic susceptibil-
ity of LiV2O4 has a simple power law behaviour over a very
wide range of temperatures. Such powerlaw scaling would
eventually have to “saturate” in Curie law behaviour at
very high temperatures, when correlations between mo-
ments can legitimately be ignored.

4 Conclusions

The magnetic susceptibility of the heavy Fermion spinel
LiV2O4 is puzzeling, not only in the size of the paramag-
netic contribution found at low temperatures, but in the
way in which this crosses over to local moment behaviour
at high temperatures. We consider geometric frustration
to play an important role LiV2O4 and have addressed this
issue by extending a recently introduced tetragonal mean
field theory for a Heisenberg model on a pyrochlore lattice
to allow for mixed valance.

Using this theory as a tool to make comparison with
the experimentally measured magnetic susceptibility of
LiV2O4, we have considered a number of different sce-
narios for the crossover from (roughly) temperature in-
dpendant paramagnetism below 40 K to apparent Curie
law behaviour at 1000 K. We find that fits based on the
tetragonal mean field theory work well below 400 K, for a
wide range of parameter sets, suggesting that the geome-
try of the lattice plays an important role in determining
the magnetic properties of LiV2O4. However not all of
these fits yield physically reasonable values of the Landé
g-factor and so the low temperature susceptibility alone
cannot uniquely constrain the model used.

Considering the susceptibility from 100–1100 K, we
find that fits based on the assumption of two different lo-
cal moment regimes, and fits based on the ansatz of power
law scaling, both provide a reasonable account of the
data. This leads us to speculate that instability of LiV2O4

against a spin glass state (on doping), and a charge or-
dered state (under pressure) manifests itself a the non-
analytic behaviour of the magnetic susceptibility.

Further analysis of theory and experiment is needed to
distinguish between these scenarios.
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Appendix A: Degeneracy of a state with total
spin Ω

The problem of how to find the degeneracy of a state with
total spin Ω ≤ NS of a system of n spins of length S was
solved by Van Vleck [30]. Here we review his derivation,

which may then be generalized easily to a system of mixed
spin.

We first consider the simpler problem of finding gz(M),
the number of states of the system with z-component of
total spin Ωz = M . By simple combinatorics, this is given
by the coefficient of xM in the polynomial(

xS + xS−1 + . . .+ x−S
)n
. (36)

The first few terms in this series are easy to calculate and
have obvious physical significance. They also demonstrate
the pattern for finding further terms

xnS →
(
xS
)n → 1 (37)

x(n−1)S →
(
xS
)(n−1) × 1→ n (38)

x(n−1)S →
(
xS
)(n−2) × 1× 1 +

(
xS
)(n−1) ×

(
x−S

)(n−1)

→ n!
(n− 2)!2!

+
n!

(n− 1)!1!
· (39)

If we consider instead a system of n1 spins of size S1

and n1 spins of size S2 the polynomial in question becomes

(
xS1 + xS1−1 + . . .+ x−S1

)n1

×
(
xS2 + xS2−1 + . . .+ x−S2

)n2
. (40)

For the purposes of calculating the partition function
of a tetrahedron what we need is g(Ω), the number of pos-
sible states with total spin Ω, and not gz(M), the number
of states with Ωz = M . We find g(Ω) by setting up a
difference equation. The number of possible states gz(M)
with magnetization M > 0 must increase with decreasing
M , since all states with total spin Ω ≥ M contribute to
gz(M). It follows immediately that the required degener-
acy g(Ω) is just the rate of change of gz(M) for M = Ω,
i.e.

g(Ω) = gz(Ω)− gz(Ω + 1). (41)

This generalizes directly to the case of a mixed spin sys-
tem.

Appendix B: Degeneracies g(Ω,σ,Σ)

Table 3. Degeneracy g(Ω) for states of spin S = 1/2 tetrahe-
dron with total spin Ω and values of associated coefficients.

Ω = 0 Ω = 1 Ω = 2

S = 1/2 2 3 1

N0 16

N1 48

N2 216
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Table 4. Degeneracy g(Ω,σ) for states of tetrahedron
with three S = 1/2 and one S = 1 spins as function of
total spin Ω = {1/2, 3/2, 5/2}, spin of S = 1/2 subsystem
σ = {1/2, 3/2}, and values of associated coefficients.

σ = 1/2 σ = 3/2

Ω = 1/2 1 2

Ω = 3/2 1 2

Ω = 5/2 0 1

N0 24

N1 101

Nσ
1 71

N2 630

Nσ
2 331

Table 5. Degeneracy g(Ω,σ,Σ) for states of tetrahedron with
two S = 1/2 and two S = 1 spins as function of total spin
Ω = {0, 1, 2, 3}, spin of S = 1/2 subsystem σ = {0, 1} and spin
of S = 1 subsystem Σ = {0, 1, 2}, and values of associated co-
efficients.

Ω = 0 σ = 0 σ = 1

Σ = 0 1 0

Σ = 1 0 1

Σ = 2 0 0

Ω = 1 σ = 0 σ = 1

Σ = 0 0 1

Σ = 1 1 1

Σ = 2 0 1

Ω = 2 σ = 0 σ = 1

Σ = 0 0 0

Σ = 1 0 1

Σ = 2 1 1

Ω = 3 σ = 0 σ = 1

Σ = 0 0 0

Σ = 1 0 0

Σ = 2 0 1

N0 36

N1 198

Nσ
1 54

NΣ
1 144

N2 1596

Nσ
2 324

NΣ
2 984

Table 6. Degeneracy g(Ω,Σ) for states of tetrahedron with
one S = 1/2 and three S = 1 spins as function of total
spin Ω = {1/2, 3/2, 5/2, 7/2}, and spin of S = 1 subsystem
Σ = {0, 1, 2, 3}, and values of associated coefficients.

Σ = 0 Σ = 1 Σ = 2 Σ = 3

Ω = 1/2 1 1 1 1

Ω = 3/2 0 1 2 2

Ω = 5/2 0 0 1 2

Ω = 7/2 0 0 0 1

N0 54

N1 362

NΣ
1 468

N2 3645

NΣ
2 3687

Table 7. Degeneracy g(Ω) for states of spin S = 1 tetrahedron
with total spin Ω and values of associated coefficients.

Ω = 0 Ω = 1 Ω = 2 Ω = 3 Ω = 4

S=1 3 6 6 3 1

N0 81

N1 648

N2 776
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